

Model Number

ASM58-H*

Features

- Industrial standard housing Ø58 mm
- 30 Bit multiturn
- Hardware encoder
- Data transfer up to 2 MBaud
- · Optically isolated RS 422 interface
- · Recessed hollow shaft

Description

This multiturn absolute encoder with modern fast technology transmits a position value corresponding to the shaft setting via the SSI interface (Synchronous Serial Interface). The maximum resolution of the ASM58-H is maximum 65536 steps per revolution at 16384 revolutions. In contrast to the ASM58 series the encoder does not have a microcontroller. Thus, it is a pure hardware encoder. The control module sends a clock bundle to the ab-

solute encoder to obtain position data. The rotary encoder then sends the position data synchronous to the cycles of the control module. It is possible to select the counting direction with the function input. The absolute encoder is mounted directly onto the application shaft, without any coupling. Rotation of the absolute encoder is prevented by a torque rest. The electrical connection is made by a 12-pin

round plug connector. A version with a 1 m cable connector is also available.

Technical data
Functional safety related parameters
MTTF _d
Mission Time (T _M)
L _{10h}
Diagnostic Coverage (DC)
Electrical specifications Operating voltage U _B
No-load supply current I ₀
Linearity
Output code
Code course (counting direction)
Interface
Interface type
Monoflop time
Resolution Single turn
Multiturn
Overall resolution
Transfer rate
Voltage drop
Standard conformity
Input 1
Input type
Signal voltage
High
Low Input current
Signal duration
Switch-on delay
Input 2
Signal duration
Connection
Connector
Cable
Standard conformity Protection degree
Climatic testing
Emitted interference
Noise immunity
Shock resistance
Vibration resistance
Ambient conditions
Operating temperature
Storage temperature Mechanical specifications
Material
Combination 1
Combination 2 (Inox)
Mass
Rotational speed
Moment of inertia Starting torque
Shaft load
Angle offset
Axial offset
Radial offset
Approvals and certificates

150 a 20 a

0%

SSI

10 ... 30 V DC max. 180 mA

descending)

20 ± 10 μs up to 16 Bit 14 Bit up to 30 Bit

0.1 ... 2 MBit/s U_B - 2.5 V

Selection of counting direction (V/R)

type 9416, 12-pin, type 9416L, 12-pin

DIN EN 60068-2-3, no moisture condensation

Ø7 mm, 6 x 2 x 0.14 mm², 1 m

DIN EN 60068-2-27, 100 g, 3 ms

housing: powder coated aluminium

-40 ... 85 °C (-40 ... 185 °F)

-40 ... 85 °C (-40 ... 185 °F)

DIN EN 60068-2-6, 10 g, 10 ... 2000 Hz

DIN EN 60529, IP65

EN 61000-6-4:2007

EN 61000-6-2:2005

flange: aluminium shaft: stainless steel

housing: stainless steel

approx. 460 g (combination 1) approx. 800 g (combination 2)

static: \pm 0.3 mm, dynamic: \pm 0.1 mm static: \pm 0.5 mm, dynamic: \pm 0.2 mm

flange: stainless steel

shaft: stainless steel

max. 12000 min ⁻¹

50 gcm²

< 5 Ncm

± 0.9 °

RS 422

10 ... 30 V

0 ... 2 V < 6 mA

 \geq 10 ms

≥ 10 ms

< 0.001 ms

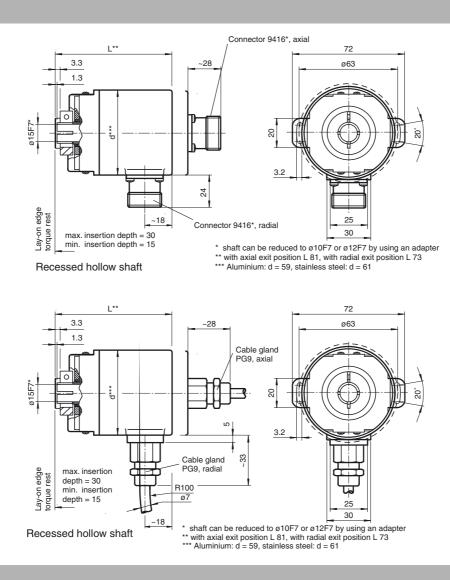
Gray code, binary code

1.9 E+11 at 6000 rpm and 20/40 N axial/radial shaft load

± 2 LSB at 16 Bit, ± 1 LSB at 13 Bit, ± 0,5 LSB at 12 Bit

cw descending (clockwise rotation, code course

UL approval


cULus Listed, General Purpose, Class 2 Power Source

Subject to reasonable modifications due to technical advances.

Copyright Pepperl+Fuchs, Printed in Germany

1

Dimensions

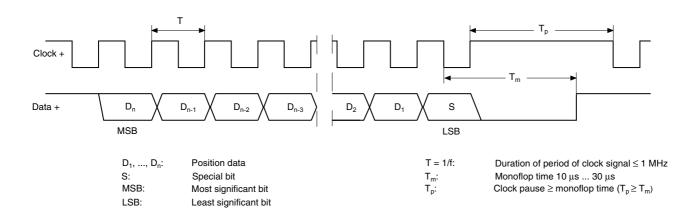
Accessories

9416

2

Copyright Pepperl+Fuchs, Printed in Germany

Electrical connection


Signal	Cable Ø7 mm, 12-core	Connector 9416, 12-pin	Connector 9416L, 12-pin	Explanation
GND (encoder)	White	1	1	Power supply
U _b (encoder)	Brown	2	8	Power supply
Clock (+)	Green	3	3	Positive cycle line
Clock (-)	Yellow	4	11	Negative cycle line
Data (+)	Grey	5	2	Positive transmission data
Data (-)	Pink	6	10	Negative transmission data
Reserved	Blue	7	12	Not wired, reserved
V/R	Red	8	5	Input for selection of counting direction
Reserved	Black	9	9	Not wired, reserved
Reserved	Violet	10	4	Not wired, reserved
Reserved	Grey/Pink	11	6	Not wired, reserved
Reserved	Red/Blue	12	7	Not wired, reserved
		9 8 10 7 12 6	8 7 11 6 5 4	

Description

The Synchronous Serial Interface was specially developed for transferring the output data of an absolute encoder to a control device. The control module sends a clock bundle and the absolute encoder responds with the position value.

Thus only 4 lines are required for the clock and data, no matter what the resolution of the rotary encoder is. The RS 422 interface is optically isolated from the power supply.

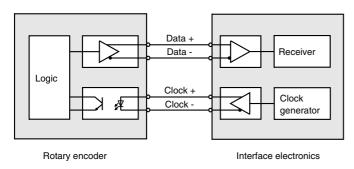
SSI signal course Standard

SSI output format Standard

- At idle status signal lines "Data +" and "Clock +" are at high level (5 V).
- The first time the clock signal switches from high to low, the data transfer in which the current information (position data (D_n) and special bit (S)) is stored in the encoder is introduced.
- The highest order bit (MSB) is applied to the serial data output of the encoder with the first rising pulse edge.
- The next successive lower order bit is transferred with each following rising pulse edge.
- After the lowest order bit (LSB) has been transferred the data line switches to low until the monoflop time T_m has expired.
- No subsequent data transfer can be started until the data line switches to high again or the time for the clock pause T_p has expired.
- After the clock sequence is complete, the monoflop time T_m is triggered with the last falling pulse edge.
- The monoflop time T_m determines the lowest transmission frequency.

SSI output format ring slide operation (multiple transmission)

- In ring slide operation, multiple transmission of the same data word over the SSI interface makes it possible to offer the possibility of detecting transmission errors.
- In multiple transmission, 25 bits are transferred per data word in standard format.
- If the clock change is not interrupted after the last falling pulse edge, ring slide operation automatically becomes active. This means that the information that was stored at the time of the first clock change is generated again.
- After the first transmission, the 26^{th} pulse controls data repetition. If the 26^{th} pulse follows after an amount of time greater than the monoflop time T_m , a new current data word will be transmitted with the following pulses.

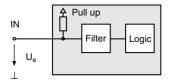


4

If the pulse line is exchanged, the data word is generated offset. Ring slide operation is possible up to max. 13 bits.

Copyright Pepperl+Fuchs, Printed in Germany

Block diagram

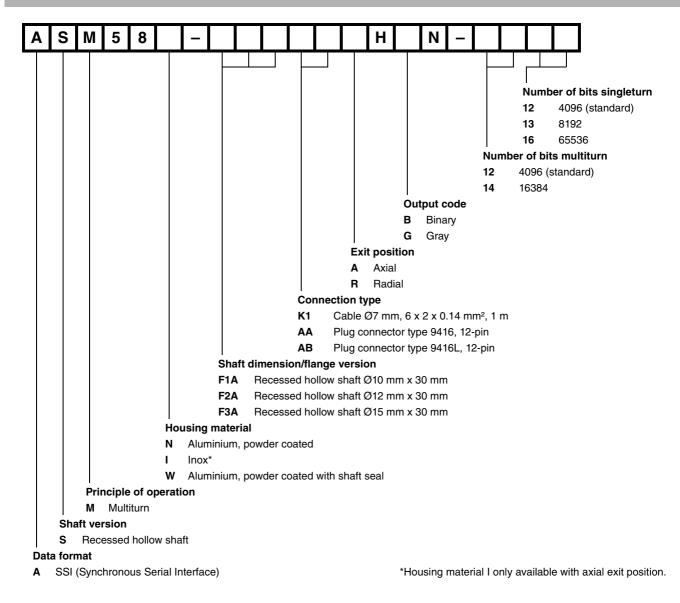


Line length

Line length in m	Baudrate in kHz	
< 50	< 400	
< 100	< 300	
< 200	< 200	
< 400	< 100	

Input

The selection of the counting direction input (V/R) is activated with 0-level.


Accessories

Accessories	Name/defining feature	Order code
Connectore	Cable socket	9416
Connectors	Cable socket	9416L

For additional information on the accessories, please see the "Accessories" section.

6

Order code

Copyright Pepperl+Fuchs, Printed in Germany

Pepperl+Fuchs Group • Tel.: Germany +49 621 776-0 • USA +1 330 4253555 • Singapore +65 67799091 • Internet http://www.pepperl-fuchs.com